Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 225: 115606, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878267

RESUMO

The elimination of heavy metal ion contaminants from residual waters is critical to protect humans and the environment. The natural clay (dolomite and quartz) based composite Fe3O4 nanoparticles (DQ@Fe3O4) has been largely explored for this purpose. Experimental variables such as temperature, pH, heavy metal concentration, DQ@Fe3O4 dose, and contact time were optimized in details. The DQ@Fe3O4 nanocomposite was found to achieve maximum removals of 95.02% for Pb2+ and 86.89% for Cd2+, at optimal conditions: pH = 8.5, adsorbent dose = 2.8 g L-1, the temperature = 25 °C, and contact time = 140 min, for 150 mg L-1 heavy metal ion initial concentration. The Co-precipitation of dolomite-quartz by Fe3O4 nanoparticles was evidenced by SEM-EDS, TEM, AFM, FTIR, XRD, and TGA analyses. Further, the comparison to the theoretical predictions, of the adsorption kinetics, and at the equilibrium, of the composite, revealed that they fit, respectively to, the pseudo-second-order kinetic, and Langmuir isotherm. These both models were found to better describe the metal binding onto the DQ@Fe3O4 surface. This suggested a homogenous monolayer sorption dominated by surface complexation. Additionally, thermodynamic data have shown that the adsorption of heavy metal ions is considered a spontaneous and exothermic process. Moreover, Monte Carlo (MC) simulations were performed in order to elucidate the interactions occurring between the heavy metal ions and the DQ@Fe3O4 nanocomposite surface. A good correlation was found between the simulated and the experimental data. Moreover, based on the negative values of the adsorption energy (Eads), the adsorption process was confirmed to be spontaneous. In summary, the as-prepared DQ@Fe3O4 can be considered a low-cost-effective heavy metals adsorbent, and it has a great potential application for wastewater treatment.


Assuntos
Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Humanos , Cádmio/análise , Chumbo , Quartzo , Adsorção , Íons , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Ind Eng Chem Res ; 62(11): 4540-4553, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975772

RESUMO

In recent decades, food-packaging markets have attracted researchers' interest in many ways because such industries can directly affect human health. In this framework, the present study emphasizes the interesting and smart properties provided by new nanocomposites based on conducting polymers (CPs), silver nanoparticles (AgNPs), and cellulose fibers (CFs) and their possible applications as active food packaging. Polyaniline and poly(3,4-ethylenedioxythiophene) containing AgNPs were elaborated on via a simple one-step in situ chemical oxidative polymerization on CFs. Spectroscopic and microscopic characterization allowed a full discussion of the morphology and chemical structure of the nanocomposites and confirmed the successful polymerization of the monomer as well as the incorporation of AgNPs into the CP-based formulation. This study aims to demonstrate that it is possible to produce a highly efficient package with enhanced protective properties. Thus, the synthesized nanocomposites were tested as volatile organic compounds, sensors, and antibacterial and antioxidant agents. It is shown that the elaborated materials can, on the one hand, inhibit the development of biofilms and decrease the oxidation reaction rate of foodstuffs and, on the other hand, detect toxic gases generated by spoiled food. The presented method has unlocked massive opportunities for using such formulations as an interesting alternative for classical food containers. The smart and novel properties offered by the synthesized composites can be operated for future industrial applications to prevent any degradation of the packaged products by offering optimum protection and creating an atmosphere that can extend the shelf life of foodstuffs.

3.
Chemosphere ; 317: 137922, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682638

RESUMO

In this study, co-precipitation synthesis of natural clay (NC) with Co3O4 nanoparticles (NPs) is carried out to elaborate the super NC@Co3O4 nanocomposites with admirable salinity confrontation, environmental stability and reusability, to eliminate heavy metal pollution such as toxic Pb(II) and Cd(II) ions. The advantages of using the NC@Co3O4 adsorbent are easy synthesis and biocompatibility. In addition, NC@Co3O4 can keep an excellent adsorption capacity by taking into account various environmental parameters such as the pH solution, NC@Co3O4 dose, adsorption process time and the initial heavy metals concentration. Furthermore, FTIR, XRD, TGA, SEM-EDS, TEM and AFM analyses were performed to confirm NC@Co3O4 nanocomposites synthesis and characterisation. The adsorption efficiencies of Pb(II) and Cd(II) ions by NC@Co3O4 nanocomposites were demonstrated to be up to 86.89% and 82.06% respectively. Regarding the adsorption from water onto the NC@Co3O4 nanocomposites, kinetics data were well fitted with PSO kinetic model, whereas a good agreement was found between the equilibrium adsorption and theoretical Langmuir isotherm model leading to maximum adsorption capacities of 55.24 and 52.91 mg/g, for Pb(II) and Cd(II) respectively. Monte Carlo (MC) simulations confirmed the spontaneous of this adsorption based on the negative values of Eads. The MC simulations were performed to highlight the interactions occurring between heavy metal ions and the surface of NC@Co3O4 nanocomposites, these were well correlated with the experimental results. Overall the study showed that NC@Co3O4 nanoadsorbents have strongly versatile applications and are well designed for pollutant removal from wastewater due to their unique adsorptive properties.


Assuntos
Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Cádmio/análise , Chumbo , Metais Pesados/análise , Óxidos , Água/química , Nanocompostos/química , Adsorção , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
4.
Nanomaterials (Basel) ; 12(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269342

RESUMO

As a result of their close similarities to the inorganic mineral components of human bone, hydroxyapatite nanoparticles (n-HAp) are widely used in biomedical applications and for the elaboration of biocompatible scaffold drug delivery systems for bone tissue engineering. In this context, a new efficient and economic procedure was used for the consolidation of n-HAp in the presence of various Nigella sativa (NS) fractions at a near-room temperature. The research conducted in the present study focuses on the physicochemical properties of loaded n-HAp 3D scaffolds by NS fractions and the in vitro antibacterial activity against Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27853), and Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 700603) bacteria. In order to better understand the effect of the inserted fractions on the HAp molecular structure, the elaborated samples were subject to Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopic analyses. In addition, the morphological investigation by scanning electron microscope (SEM) of the loaded n-HAp 3D scaffolds demonstrated the presence of a porous structure, which is generally required in stimulating bone regeneration. Furthermore, the fabricated 3D composites exhibited significant antibacterial activity against all tested bacteria. Indeed, MIC values ranging from 5 mg/mL to 20 mg/mL were found for the HAp-Ethanol fraction (HAp-Et) and HAp-Hexane fraction (HAp-Hex), while the HAp-Aqueous fraction (HAp-Aq) and HAp-Methanol fraction (HAp-Me) showed values between 20 mg/mL and 30 mg/mL on the different strains. These results suggest that the HAp-NS scaffolds were effective as a drug delivery system and have very promising applications in bone tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...